
Run-Time Satellite Tele-Communications Call Handling
as Dynamic Constraint Satisfaction

Christian Plaunt∗ Ari K. Jónsson† Jeremy Frank∗

NASA Ames Research Center NASA Ames Research Center NASA Ames Research Center
Mail Stop 269-2 Mail Stop 269-2 Mail Stop 269-2

Moffett Field, CA 94035 Moffett Field, CA 94035 Moffett Field, CA 94035
(650) 604-2928 (650) 604-2799 (650) 604-2524

plaunt@ptolemy.arc.nasa.gov jonsson@ptolemy.arc.nasa.gov frank@ptolemy.arc.nasa.gov

Abstract — The next generation of communications satellites
may be designed as a fast packet-switched constellation of
spacecraft able to withstand substantial bandwidth capacity
fluctuations due to causes ranging from unstable weather phe-
nomena to intentional jamming. Scheduling and servicing
call requests in such a dynamic environment requires real-
time decisions with regard to allocation of resources includ-
ing bandwidth, call routing and load balancing.

In this paper, we present a general satellite communication
scheduling domain, and describe a working implementation
of an autonomous system for handling such dynamic schedul-
ing problems. The solution approach is drawn from the area
of dynamic constraint satisfaction problems (DCSP), which
generalizes these and many other dynamic scheduling prob-
lems. We adapt DCSP techniques to the satellite communi-
cations domain, in particular solution repair and optimization
by gradient-climbing.

These reasoning methods respond to changes in the problem
specification by repairing the current solution. As a result,
they are anytime algorithms which can trade run-time effi-
ciency for solution quality. This approach supports dynamic
call requests; negotiation and fulfillment of prioritized Qual-
ity of Service (QoS) contracts; graceful degradation in the
presence of dynamic call traffic, changes of priority schemes,
and environmental conditions; and optimization of geometri-
cally constrained resources.
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1. INTRODUCTION

The current revolution in information technology continu-
ally produces new advances in communications capability.
One of the critical technologies being closely scrutinized is
the application of Asynchronous Transfer Mode (ATM) tech-
nology to satellite communications systems. Satellites are
limited and expensive communications resources, and ATM
technology, through Quality-of-Service (QoS) contracts and
statistical multiplexing, offers greater flexibility and resource
utilization than existing best-effort and first-come-first-serve
systems currently used by some satellite telecommunications
technologies.

However, applying ATM to support communication satellites
requires innovations beyond standard ATM networks. While
ATM offers advanced guarantees and hierarchical resource
allocation, frequently ATM does not incorporate priorities in
it’s guarantee model. One of the goals of this work is to
support these domain requirements while increasing the ef-
ficiency of resource utilization and supporting dynamic re-
source allocations. In addition, we must also support geo-
metric constraints and optimizations resulting from satellite
beam management.

We use the Planner/Scheduler (PS) and Smart Executive
(Exec) subsystems of the Remote Agent (RA) (Bernardet al.
1998; Pellet al. 1998; Muscettolaet al. 1998) to implement
a new system for satellite telecommunication. The RA will
be the first artificial intelligence-based autonomy architec-
ture to reside in the flight processor of a spacecraft (NASA’s
Deep Space One (DS1)). Similar to other high-level con-
trol architectures (Bonassoet al. 1997; Wilkinset al. 1995;
Simmons 1990; Muslineret al. 1993), this RA for satellite
telecommunications clearly distinguishes between adeliber-
ative and areactive layer. In the work reported here, we focus
on the reactive layer, the Exec, and its use as a run-time dy-
namic constraint solver.

We are motivated by the requirements of complex, critical,
and highly dynamic satellite tele-communications systems.
In this domain, there are several conflicting goals which influ-
ence many levels of design choices (for instance, guaranteed



connections versus maximal network throughput, fluctuating
bandwidth, conflicting demand patterns, and quality of ser-
vice). These considerations make this a particularly interest-
ing domain for our exploration. A communication network
in this domain must be highly configurable and controllable
in order to handle the strategic needs of the user, and also
be highly autonomous in order to function efficiently in the
potential absence of such control.

Communications Scheduling

The central issue in a QoS communications network is to al-
locate resources in response to requests for communications.
For a concrete example, let us consider a communications
network that is based on a small number of multi-beam com-
munication satellites. Each satellite has multiple antennae,
each of which can be slewed to an area within the range of
the satellite’s position. The aim of each antenna determines
which ground terminals can use the beam associated with that
antenna. This is illustrated in Figure 1. In order to connect a
ground station to another ground station, we must find a beam
that covers the first ground station and has sufficient uplink
capacity, and find a beam that covers the second ground sta-
tion and has sufficient downlink capacity. Once this has been
done, the request can be serviced and the appropriate uplink
and downlink capacity associated with this connection.

Given the expense of satellites and the demand for commu-
nications abilities, it is not surprising that typically there is
demand for more bandwidth than is actually available. This
means that connection requests may be rejected and, where
very important connections must be made regardless of exist-
ing connections, some connections may have to be terminated
in order to make more bandwidth available. The simplest op-
tion is of course to reject any requests for which bandwidth
is not available. However, this solution may reject more re-
quests than necessary, or may reject high priority calls be-
cause low priority calls have all available resources. The han-
dling of rejected and terminated connections is typically not
an issue in traditional QoS networks. Even assuming that
there are no other networks available, such communication
requests could simply be requested again, after a suitable de-
lay. In the case of automated systems doing one-way trans-
fers, e.g, image transmission, the sending terminal can even
go into batch mode while waiting to get reconnected.

The core of the complexity of the circuit-switched network
domain is that there may be more than one route between
two terminals. In the satellite example in Figure 1 for in-
stance, multiple beams may cover each of the terminal sta-
tions involved. This not only means that we must look at
multiple uplink and downlink paths, but also that by moving
existing connections between beams or paths, we may find
sufficient capacity to handle an incoming connection request
which might otherwise not have been accepted. Although this
would be significantly simplified by the (unrealistic) assump-
tion that each request needed the same bandwidth, the prob-
lem would not go away. Existing connections might still need

to migrate to other beams that cover their ground terminal if
one or more of the beams associated with a particular con-
nection is moved, for example to cover incoming calls from
other areas (see Section 3 and Figure 4 for more details).

The process of moving existing connections, referred to here
ascall migration, interacts with any priority rules that may
have been specified for the network. For example, let us
imagine a connection request that can only be assigned to a
single uplink beam that is at full capacity and that each con-
nection on that beam has higher priority than the new request.
It may still be possible to handle the new request by moving
one of the higher priority connections to another beam, mak-
ing room for the new call.

An important concern in the field of communications is re-
sponse time, i.e., the time from a when a call request is sub-
mitted to when it is connected (or denied) should be minimal.
This has typically led to rather simple methods for handling
conflicts and complications, e.g., simple call rejection when
routes with enough capacity cannot be found. However, as
the demands on communication networks increase and the
types of connections get more and more diverse, the need for
more sophisticated, yet efficient, connection request handling
systems, becomes ever more pressing.

A Brief Background on ATM

The domain consists of a constellation of spacecraft which act
as ATM switches directing and controlling traffic flow from
a number of ground telecommunications sources and destina-
tions. Traffic is based on an ATM model with different call
contract types with the addition of callpriorities. Contracts
ensure a Quality of Service (QoS) so that guarantees can be
made a priori about specific types of call connections. At con-
nection setup time, the user must inform the network of both
the expected nature of the traffic and the type of QoS contract
required. Following are some terms from the ATM literature
(see (Varma 1997) for a concise tutorial) we will use in this
paper:

• CBR (Constant Bit Rate): Bit rate remains constant over
duration of connection; requires delay, jitter and band-
width guarantees1.

• VBR (Variable Bit Rate): Intended for supporting bursty
data and defined by peak and average rate.

• ABR (Available Bit Rate): Intended for data transmis-
sion which do not preserve any timing relationship be-
tween source and destination.

In addition calls havepriorities. Call priorities are designed
to ensure that critical calls which need to get through under all
circumstances are guaranteed bandwidth capacity while those
of lower priority — regardless of contract type — or of a

1We distinguish here between different peak and average bandwidth re-
quirements among QoS contracts. E.g., CBR 2 requires roughly twice as
much bandwidth as CBR 1.
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Figure 1: A small network consisting of two satellites, each with three uplink/downlink beams. Coverage areas can overlap,
beams can be slewed to various areas. Any two ground stations can communicate via any combination of beams and satellites.

non-critical nature are allocated bandwidth on an as available
basis. Such calls may be of any contract type, depending on
the nature of the call (voice, video, data, etc.). Less critical
calls might request an “expensive” contract (e.g. CBR), but
also be willing to accept a less expensive contract (e.g. ABR)
if that is the best contract available. While call priorities are
not part of traditional ATM QoS models, they can be viewed
as an extension of ATM QoS; that is, contracts are guaranteed
as long as higher priority calls do not require those resources.

Currently, such communication is managed by restricting the
identity, time, and bandwidth allocations of people and equip-
ment that can use the system to communicate. Multiple high
priority channels are reserved just in case an important mes-
sage needs to be sent. In this approach not only is the com-
plete bandwidth allocation preallocated as a “pipe” (i.e. once
allocated the resources are completely tied to the user), but
dynamic request allocations can only be accepted if the re-
quest is of a high enough priority to preempt an ongoing call
when there is insufficient capacity. Needless to say, this is
a highly suboptimal approach, especially in circumstances
where frequently a large amount of bandwidth is needed on
demand and where no accurate predictions can be made a pri-
ori. Adding priorities and call termination to a ATM QoS
network makes this work unique.

A Brief Background on QoS Networks

There is a large and growing body of work on QoS routing.
Apostolopouloset al. (1998) define Quality of Service rout-
ing as “the process of selecting the path to be used by the
packets of a flow based on its QoS requirements, e.g. band-
width or delay.” In the call servicing domain, this can be re-
interpreted slightly, to be the allocation of resources for the
routing of a call based on its QoS requirements.

QoS routing is meant to improve the service received by users
of the network in whatever required form, be it enhanced net-
work throughput, minimized network response time, mini-
mum variability in network performance, and so on. It is also

designed to enhance network revenue; each completed call
results in some reward, as in Marbachet al. (1998).

A QoS scheme consists of several components:call admis-
sion control, route selection, update policies, andcall man-
agement. In our scenario, there is no update policy; each
ground station is assumed to know the status of the beam,
and there is no need to distribute information to remote parts
of the network. This eliminates uncertainty about available
bandwidth and protocol overhead. We discuss the remaining
aspects below.

Route Selection — Circuit switched networks reserve routes
in advance. One protocol to reserve routes is RSVP, which
manages resources in support of QoS routing. RSVP mes-
sages are sent on the path traffic will take, notifying switches
along that route of the resources which the traffic requires. In
an ATM setting, this assumes the route is allocated before-
hand (Berson 1996).

Call Admission Control — Call admission control (CAC) is
the process of deciding whether or not to accept a call. Greed-
ily accepting all calls may result in suboptimal performance
as high priority calls are blocked by low priority calls. Mar-
bachet al. (1998) and Tong & Brown (1998) discuss rein-
forcement learning approaches to devising CAC policies to
maximize expected reward in a QoS network. Apostolopou-
loset al. (1998) investigate a CAC policy in conjunction with
various updating schemes for a path selection procedure in a
QoS setting.

Call Management — Frequently, as in Apostolopouloset al.
(1998), QoS routing involves selecting a path for a flow or call
and maintaining that flow until the call completes; hence call
management is limited to registering the beginning or com-
pletion of a call. In cellular telephone networks and other
mobile communication networks employing protocols such
as Mobile IP, call migration does occur. To our knowledge
there is no system implementing QoS routing on such net-
works, however in principle it could be done. In cell phone



network, QoS requirements could dictate which of overlap-
ping base stations calls are handed off to.

2. MODELING THE PROBLEM AS

CONSTRAINT SATISFACTION

Communications scheduling problems are instances ofcon-
straint satisfaction problems. These problems are character-
ized by a set of constraints on a finite set of variables, each
having a finite domain of values. Since many real-world prob-
lems can in fact be described as constraint satisfaction prob-
lems, this area has received a great deal of attention in recent
years. This interest in constraint satisfaction has produced a
number of important advances, including methods for solving
realistically sized problems quite efficiently. In fact, a num-
ber of real-world problems are currently being solved in in-
dustrial applications, using the techniques developed for con-
straint satisfaction.

At a first glance, it may seem unintuitive to look at a more
general class of problems when dealing with time critical
real-time reasoning. However, the literature on constraint sat-
isfaction includes a number of efficient techniques that can be
applied in domains such as real-time decision making. Fur-
thermore, the field is well established and formal, which gives
us clear and developed definitions, and more importantly, a
large library of existing results. This combination makes con-
straint satisfaction a powerful tool for helping to solve prob-
lems such as communications scheduling problems.

Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a set of variables,
each taking values from a finite domain, along with a set of
constraints on which combinations of variable assignments
are allowed. A solution to a CSP is a listing of variable-value
pairs, such that each variable is mentioned exactly once, and
that these assignments satisfy all the constraints. To specify
this formally:

A constraint satisfaction problem is a tripleC = (X,V,K),
where:

1. X = {x1, . . . , xn} is a set of variables

2. V = Vxi | i ∈ {1, . . . , n}, where eachVxi is a finite set
of possible values ofxi.

3. K is a set of constraints(Yj , Rj), where Yj =
{xi1 , . . . , xik} ⊆ X andRj ⊆

∏k
ν=1 Vxiν .

A solution to a constraint satisfaction problemC =
(X,V,K), where X = {x1, . . . , xn}, is an n-tuple
(vx1 , . . . , vxn), such that:

1. vxk ∈ Vxk for k = 1, . . . , n, and

2. For any(Y,R) ∈ K with Y = {xi1 , . . . , xik}, we have
(vxi1 , . . . , vxik ) ∈ R.

Many methods are available for solving constraint satisfac-
tion problems. There are two major categories of solution
techniques.Complete methods are guaranteed either to find
a valid assignment of values to variables or prove that no
such assignment exists2. The problem is that in the worst
case, complete methods may require run-time that grows ex-
ponentially with the number of variables to find a solution.
So, although such methods frequently do exhibit good per-
formance, and can guarantee a correct answer for all inputs,
solutions can often be found faster by using methods that may
not be complete. Suchincomplete methods cannot prove that
a CSP has no satisfying assignment, but, given sufficient time,
they can find satisfying assignments with high probability,
if solutions exist. These incomplete algorithms have gained
popularity in recent years, due to their simplicity, speed and
observed effectiveness at solving certain types of problems.

Constraint Optimization Problems

When it comes to real world constraint applications, the is-
sue is typically not just finding a solution, but finding a good
one. For many problem domains, such as scheduling, this can
significantly add to the complexity of solving the problem. It
is, for example, trivial to find a valid job shop schedule, but
it is in general intractable to find one of minimal length. The
good news is that when it comes to real-time systems, one
can often take advantage of how easy it is to find a valid, but
not necessarily optimal solution to the typical optimization
problem.

To formalize this concept, we define aconstraint optimization
problem as a pair(C, g) whereC is a constraint satisfaction
problem andg is a function that maps every valid solution3 to
C into IR. An equivalent definition of the optimization crite-
ria is that it specifies a partial ordering of solutions. In some
cases, such as when dealing with priorities, partial preference
ordering is more intuitive than a real function. Either way, we
can view the optimization function as a gradient within the
subset of valid solutions. The goal of constraint optimization
is to find a valid solution that is a global maxima within the
preference gradient.

As an example of a constraint optimization problem, let us
consider a simple scheduling problem consisting of two low-
capacity beams and a few call requests (disregarding geo-
graphic constraints for simplicity). The call requests are then
variables that must be assigned beam allocations (or rejected),
and the constraints limit the overall bandwidth requirements
for all calls assigned to a beam. Finding a satisfactory assign-
ment of calls to beam 1, beam 2 or rejection, is a constraint
satisfaction problem. If we now specify a preference among
2This does not mean that complete methods necessarily look at all pos-

sible assignments. Most assignments are analyzed and eliminated by other
means of proving them invalid.
3The valid solutions of a CSP are all the assignments which satisfy the

constraints.



solutions, or equivalently, specify an optimization function
on the set of valid assignments, we have a constraint opti-
mization problem. In other words, the constraint satisfaction
part defines a set of valid call assignments, and the preference
functions defines an evaluation of each solution, based on call
priorities.

Dynamic Constraint Satisfaction Problems

Another factor in real-world problems is dynamism; the
world is constantly changing, and often we are presented with
problem instances that evolve over time, rather than remain-
ing static. One could simply view and solve each variation
separately, but in certain situations that may not be possi-
ble, given real-time response requirements. Furthermore, we
will usually find that it is more efficient to view them as re-
lated and solve them as a sequence of connected problems.
Such sequences of changing constraint satisfaction problems
are called dynamic constraint satisfaction problems.

To formalize this notion, letC = (X,V,K) be a constraint
satisfaction problem. Then, any problem of the formC ′ =
(X ′, V ′,K ′), C′ �= C, such thatX ′ ⊇ X, V ′x ⊆ Vx for each
x ∈ X andK ′ ⊆ K, is arestriction of C. And any problem
of the formC ′ = (X ′, V ′,K ′), C′ �= C, such thatX ′ ⊆ X,
V ′x ⊇ Vx for eachx ∈ X andK ′ ⊇ K, is a relaxation of
C. A dynamic constraint satisfaction problem is a sequence
of constraint satisfaction problemsC0, C1, . . ., such that each
problemCi is either arestriction or a relaxation of Ci−1.
This definition is consistent with Dechter & Dechter (1988)
and Verfaillie & Schiex (1994).

Not surprisingly, it is relatively straightforward to generalize
the idea of dynamic constraint satisfaction to dynamic opti-
mization problems. Formally, adynamic constraint optimiza-
tion problem is a sequence of optimization problems, such
that each entry is a relaxation or a restriction of the previous
problem. This means that the optimization function remains
unchanged throughout, but the set of variables, domains and
constraints may change.

Hill Climbing

Hill climbing is one of the most popular approaches to
solving constraint satisfaction problems in an incomplete
fashion4. The basic idea is to define an evaluation criteria
for each valid solution (or invalid full assignments), such that
improving the evaluation leads to better (or closer to valid) so-
lutions. Needless to say, choosing this evaluation function is
a critical aspect of successful hill-climbing search. The other
main aspects of hill-climbing are the operation that maps one
solution candidate to a set of possible successors, and the se-
lection process for picking the successor.

To clarify the notion of hill-climbing, let us again consider a

4The two best known successful hill-climbing techniques are GSAT (Sel-
manet al. 1992) which is used to solve SAT problems, and Min-Conflicts
(Minton et al. 1991) which is used to solve general constraint satisfaction
problems.

simplified call allocation problem. A trivial, valid solution to
this problem consists of rejecting all the call requests. This
is the worst valid solution, given the optimization criteria,
but it is nonetheless valid. To define a hill-climbing algo-
rithm, we can therefore use the optimization function itself
to evaluate our candidate solutions, and use randomization
to select among ties. To finish specifying the hill-climbing
search method, we must define an operation that maps one
candidate solution to a set of other candidates. A possibility
is to select a call that is currently rejected, and try assigning it
to a beam, possibly displacing lower priority calls. The hill-
climbing mechanism then picks the call-beam combination
that maximizes the optimization function.

To take a concrete example, assume we have assigned a call of
priority 5 requiring a bandwidth of 2, to a single given beam
with capacity of 4 units5. Two calls are currently rejected, one
with priority 3 and bandwidth requirement of 3, and the other
with priority 7 and bandwidth requirement of 1. This current
solution could be described as({C5,2}, {C3,3, C7,1}), with
the first set being calls assigned to the beam and the second
set consisting of rejected calls.

Let us then choose a simple optimization function, which
sums up(10 − p) · b, wherep is the priority (1 highest, 8
lowest) andb is the bandwidth used. Our current solution
then evaluates to(10 − 5) · 2 = 10. Our successor function
might then give the following options:

({C3,3}, {C5,2, C7,1})

which evaluates to 21, and

({C5,2, C7,1}, {C3,3})

which evaluates to 13. We therefore pick the first candidate
as the new current solution.

A second hill-climbing iteration would then result in

({C3,3, C7,1}, {C5,2})

which is indeed an optimal solution at 24.

Unfortunately, one cannot expect hill-climbing algorithms to
find optimal (or even near-optimal) solutions that easily for
real problems. In fact, it is invariably intractable to find opti-
mal solutions to real problems. However, hill-climbing meth-
ods have the distinct advantage that they can provide a valid
solution at any time-point. This makes the technique very
suitable for systems that must perform with real-time guaran-
tees. An added bonus is that the more time the hill-climbing
process is given, the better the solution will typically be. It is
therefore not surprising that our approach to solving the run-
time satellite scheduling problem, is based on hill-climbing.
We now turn our attention to the exact hill-climbing algorithm
we developed.

5To clarify the issues in specifying a hill-climbing algorithm, this sample
problem is greatly simplified. It is not representative of the actual problem
solved by the full algorithm, which is described below.



3. DYNAMIC CALL ROUTING

AND MANAGEMENT

The run-time system developed and described in this paper
is the reactive real-time subset of the Remote Agent satellite
tele-communications architecture shown in Figure 2 (Plaunt
et al. 1998). The principal components of this architecture —
the Call Admission Controller, the Load Balancer, the Con-
tract Manager and the Priority Table Managers — implement
the domain specific DCSP engine which is the subject of this
paper. This architecture is based on the run-time components
of the Remote Agent (Pellet al. 1998) plus the unshaded do-
main specific components shown in this figure.

In this application, the run-time execution system’s objective
is to enforce a priority based communication policy in a va-
riety of environmental and network loading situations. In the
current system, the communication policy of interest is (1) to
service all dynamic communication requests in highest pri-
ority first order until either all requests are serviced or band-
width capacity is reached; and (2) when bandwidth capacity
is reached (or exceeded), to migrate or to shed communica-
tion allocations in lowest first priority order until bandwidth
usage is back within capacity. That is, the major functions
of the implemented algorithm are those concerned with the
constraints on call admission and load balancing.

Priority Management

Policy enforcement is based on a system of call priorities.
That is, when enforcing these policies, whenever a conflict
arises either during the call admission process or in the man-
agement of the current calls in progress (load balancing), the
system consults dynamic priority table managers to determine
which call or calls will be accepted, denied, migrated, or shed.
An example of such a table which determines the “priority
rank” of a particular call is shown in Figure 3.

Call Acceptance

All arriving call requests are handled by the Call Admission
Controller (CAC). The CAC admits call requests to the sys-
tem based on the call’s priority rank and system resource
availability. When a new call request is received, the CAC
proceeds in the following steps:

1. attempt to find a route for the call, and if one is found:

2. find a solution to the new DCSP which includes the new
call request (i.e. run load balancer):

3. if the new call request is part of the new solution (i.e.
survives load balancing), accept it, otherwise deny it.

Finding a route for a call involves first finding both uplink and
downlink beams with coverage for both the call’s origin and
destination (see Figure 4 for a conceptual view of beam cov-
erage). Note that this is done without checking forcapacity

on either the uplink or downlink beams. The reason for this
is that if either of the beams are at or close to capacity, it may
be necessary for the new call to bounce one or more lower
priority existing calls in order to be accepted (see next sub).

This is exactly what the second step of call acceptance does.
That is, given the new call requestand all of the currently in
process calls, the system finds a new solution which satisfies
the priority, bandwidth and coverage constraints. The solu-
tion must be no worse than the current solution, and must be
derivable from the current solution with very little search.

Once a new solution is found, if the new call request is part of
that solution, then the call is accepted, admitted to the system,
all changes required to realize the new solution are taken, and
the call becomes one of those managed as part of load balanc-
ing. If the new request isnot part of the new solution (which
can happen when one of the beams in at or near capacity and
the new request is of low priority), the call is denied and no
resources are allocated to it.

In terms of the DCSP framework, the addition of a new re-
quest constitutes a restriction of the CSP. The solver attempts
to repair the previous solution by extending the assignment
to the new variables, then conducting a form of hill-climbing
search to improve the assignment. If this can be done without
terminating a connection, then no further modification of the
problem instance occurs. If an existing call must be termi-
nated, or if the new call request must be rejected, this consti-
tutes a relaxation of the CSP. Further, note that if the new call
was rejected then no new solution could be found.

Load Balancing

The purpose of load balancing in this application is to op-
timize bandwidth usage within the capacity available on the
network and the coverage provided by the uplink and down-
link beams in the current system configuration.

The load balancing machinery is invoked when deciding
whether to accept a call and whenever the call load on the
system exceeds the system resources to support such calls.
This can happen:

1. when a new call request would put one or more of the
beams on its route over capacity,

2. when a beam’s capacity drops below its current usage
(e.g. due to environmental interference, component fail-
ures, jamming, etc.),

3. when a beam moves away from a coverage area and
can no longer provide coverage for either the uplink
or downlink of one or more of the connections on that
beam.

When a beam moves, some calls associated with that beam
may no longer have coverage. For example, if the uplink il-
lustrated in Figure 4 Configuration A is on Beam 2 at some
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Figure 2: The application architecture for a modular, high level ATM network controller. The run-time components which
implement the dynamic constraint solver for this domain — the Call Admission Controller, Load Balancer, Contract Manager
and the Priority Table Managers — are unshaded.

Rank 1 2 3 4 5 6 7 8
Contract CBR 1 CBR 2 VBR 1 CBR 1 CBR 2 ABR 1 ABR 2 ABR 1
Priority high high high medium medium high high medium

Figure 3: An example of a priority table. Priority rank is determined as a function of a call’s assigned priority and QoS contract.
That is, the number one ranked calls are “high” priority CBR 1 calls, the second rank are “high” priority CBR 2 calls, and so
on.
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Figure 4: An illustration of two possible situations which arise in call routing and migration. Uplink and downlink beams may
or may not overlap (Configuration A and B respectively). Calls may be un-routable, or routable via one or more routes. Beams
move and change coverage areas over time. Areas may be covered by zero, one, or more beams.



point, and that beam is then moved as in Figure 4 Configu-
ration B, then that uplink must either be moved from Beam
2 to Beam 1 or the call must be dropped. However, before
the uplink can be moved, Beam 1 has to be checked for the
required capacity for a call of this particular priority rank at
this time. If it has the capacity then the uplink can be moved,
otherwise the call must be dropped.

Load balancing must be fast and must disrupt the system (and
hence the DCSP solution) as little as possible when invoked.
That is, it is acceptable to trade some quality in the new solu-
tion for more efficiency in the search for, and realization of, a
solution.

Since the load balancer is only invoked when system usage
would exceed capacity (or a given threshold), its primary job
is to migrate or shed the lowest priority calls in the system
in order to provide continuous (“circuit switched”) service to
the higher priority calls.

Call Shedding and Migration — When the available band-
width or coverage on a particular beam can no longer support
all of its uplink or downlink usage, some calls must either be
re-routed or dropped in order to keep the beam’s usage within
its capacity. As a matter of policy, this task must be carried
out such that:

1. calls are only shed as a last resort when they can’t be
migrated or deferred (e.g. an ABR call may have its bit
rate turned down in order save bandwidth);

2. although migrating one call to make room for another
is recursive (i.e. the call being migrated may in turn
force another to be moved), since only calls of strictly
lower priority can be bumped, the search terminates very
quickly.

The implemented load balancing algorithm is:

1. if the uplink on this beam is over capacity:

(a) find the lowest priority call on this uplink beam,

(b) make a list of alternate beams which have the re-
quired uplink coverage for this call, sorted in most-
capacity-first order,

(c) for each beam in this list of alternate beams, try
to migrate this lowest priority call to this alternate
beam;

i. if the beam has capacity, move this call and
move on to the next,

ii. if the beam does not have sufficient capacity
and a set of calls of sufficient capacity with
strictly lower priority can be found on the al-
ternate beams, all of these calls are migrated
(or terminated) and the new call is moved onto
this beam,

(d) if the beam does not have capacityand no capacity
can be reclaimed on it, this call is terminated and
its resource are released;

2. now do the same thing for the downlink of this beam
if it is over capacity (which it may not be — migrat-
ing or shedding the uplink may already have cleared
enough bandwidth if the uplink and downlink beams
were shared).

The algorithm is designed such that the smallest number of
calls possible are migrated or shed. That is, only one call at a
time is considered for migration or shedding, and before any
work on either end of that call (uplink or downlink) is actually
done, the beam is checked to be sure the work indeed needs
to be done. This happens because the bandwidth for any call
must be accounted for separately on its uplink and downlink
path. For example, when a call is shed, both its uplink and
downlink resources are returned. If the uplink and downlink
were on the same beam, then twice as much bandwidth as
expected is recovered. If the uplink and downlink are differ-
ent beams, than both beams reclaim the bandwidth equal the
bandwidth used by to that particular call.

Discussion

Figure 5 shows a graph of bandwidth usage by priority over
time on one of the downlink beams during a test run of 7769
dynamic call requests over a period of 33 minutes (an average
of about 3.9 calls per second). Note that the highest priority
calls (those with a rank of “1”) are graphed at the bottom, with
successive ranks of lower priority calls (ranks 2–8) in increas-
ing order above. The top-most line graphs the total available
bandwidth capacity of the beam during the run. This scenario
of multiple stepwise decreases in bandwidth followed by a
similar set of increases in bandwidth over time is intended to
illustrate the reactivity of the system, not to represent a typi-
cal operational situation.

This figure shows that as the capacity of this beam changes,
calls are only affected in lowest-first priority order. That is,
high priority calls behave as though they are in a “circuit
switched” pipe, and low priority calls fill in the remaining
available bandwidth. However, since the (packet switched)
virtual “circuits” are dynamic, there is little or no wasted
bandwidth (in contrast to a real circuit which when in use
(or reserved), uses all of its allocated bandwidthregardless
of how many slots of data are actually sent via the switch).
In addition, as many priorities as possible are provided this
“circuit switched” behavior within the available bandwidth.

When checking to see if a call can be migrated from one beam
to another, it is allowed to “bump” the lowest priority call (or
calls) on the target beam to make room. The bumped call (or
calls) may in turn recursively try to migrate to an alternate
beam. However, calls to be bumped must be both the lowest
priority on the beam of interestand be of a lower priority
rank than the call which is being migrated. Assume that all
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Figure 5: A graph of bandwidth capacity and usage by priority over time on a downlink beam. The highest priority calls (1) are
at the bottom, with successive lower priority call in increasing order above (2-8), total available bandwidth capacity at the top.

calls have the same capacity requirements; then migration can
only displace a single call. Further, even in the worst case, the
restriction that the displaced call must be the lowest priority
call on the alternate beam means that after a call has been
displaced from each beam, the call being displaced on the
last beam is thelowest priority call in the system.

We can place an upper bound on the number of migrations
performed in each step. Suppose that the number of priori-
ties available isp and the number of beams the satellite sup-
ports isb. If p > b, then in the worst case migration requires
O(b2) total (recursive) migrations because once the lowest
priority call has been bumped from every beam, the call can’t
migrate anywhere. Ifp < b then in the worst case migra-
tion requiresO(pb) total (recursive) migrations because each
migration must strictly reduce the priority of the call being
migrated. In practice, this number is much smaller because
there are typically a small number of beams, the lowest prior-
ity is reached very quickly, any calls which are disconnected
clear bandwidth on both uplink and downlink beams, and so
on. When relaxing the assumption that all calls have the same
capacity, this solution still holds, but the complexity now de-
pends on the number of calls which need to be displaced in
order to make room for the new call. Finally, note that since
there is only a small number of beams and priorities, this up-
per bound gives us the real-time guarantees we wanted.

4. CONCLUSIONS ANDFUTURE WORK

In this paper, we introduced a real world problem domain that
can be viewed as a dynamic constraint optimization problem

with soft constraints. Communications satellites of the fu-
ture may be designed as a fast packet-switched constellation
of spacecraft able to withstand substantial bandwidth capac-
ity fluctuation ranging from unstable weather phenomena to
intentional jamming of communication. Scheduling and ser-
vicing call requests in such a dynamic environment requires
real time decisions with regard to allocation of bandwidth,
call routing, load balancing, call prioritization, and so on. We
have explored viewing this as an instance of a dynamic con-
straint satisfaction problem.

After introducing this dynamic call routing problem, we re-
formulated it as a constraint satisfaction problem with soft
constraints. We then provided a set of hill-climbing meth-
ods for handling this problem. Based on a fast, single-pass
solution repair mechanism, we showed that the methods are
capable of performing the functionality required within the
specified time windows.

Finally, we discussed the implementation of the concepts in
the form of a domain specific software artifact built from the
components of the Remote Agent. This run-time reactive ex-
ecution system enforces a set of communication policy con-
straints discussed above in a satellite tele-communications
domain consisting of a single satellite with two beams. We
showed that the system can provided traditional “circuit
switched” like guarantees for hight priority connections, and
exploit packet switching in order to optimize bandwidth ca-
pacity usage at the same time.

There are two particular comparisons we plan to make in or-
der to quantify the effectiveness of the currently implemented



system. First, we plan to compare the dynamic throughput (in
terms of slots per second) of the current system with a circuit
switched system. The purpose here is the see if the packed
switched approach in fact does provide the kind of gains it
appears to. Second, we plan to compare the current system to
a series of “cost-no-object” DCSP solutions in order to quan-
tify its optimality.
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